Senin, 07 November 2011

Geometri Dimensi Tiga Kubus


Kubus adalah contoh sebuah benda ruang yang dibatasi oleh enam bidang datar yang masing-masing berbentuk persegi yang sama dan sebangun, nama lain dari kubus adalah bidang enam beraturan. Dibawah ini adalah gambar dari kubus.

Gambar 1
  1. Sisi, rusuk, dan titik sudut kubus
a.       Sisi kubus, enam buah persegi pada kubus itu disebut sisi kubus, sisi-sisi kubus tersebut adalah bidang ABCD, EFGH, BCGF, ADHE, ABFE, dan DCGH
b.      Rusuk kubus, rusuk kubus merupakan garis persekutuan antara dua sisi kubus, rusuk sebuah kubus berjumlah 12 buah. Rusuk-rusuk tersebut adalah AB, BC, CD, DA, EF, FG, GH, HE, AE, BF, CG, dan DH.
c.       Titik sudut kubus, titik sudut kubus adalah persekutuan tiga rusuk atau tiga bidang sisi, banyaknya titik sudut sebuah kubus adalah delapan buah yaitu A,B,C,D,E,F,G, dan H.
d.      Rumus Euler, pada sebuah kubus terdapat 6 (S=6)buah sisi, banyaknya rusuk ada 12 (R=12)  buah dan banyaknya titik sudut ada 8 (T=8) buah. Hubungan antara S,R, dan T  dapat dituliskan dengan persamaan : S + T = R + 2.
  1. Diagonal sisi, diagonal ruang, dan bidang diagonal.
a.       Diagonal sisi adalah ruas garis yang menghubungkan dua buah titik yang berhadapan pada setiap sisi kubus.
Gambar 2
Diagonal AH dan DE adalah diagonal sisi pada sisi ADHE sedangkan diagonal-diagonal sisi yang lainnya adalah AF dan BE untuk sisi ABFE , DG dan CH untuk sisi DCGH, BG dan CF untuk sisi BCGF, AC dan BD untuk sisi ABCD,serta  EG dan FH untuk sisi EFGH. Untuk menentukan panjang diagonal-diagonal tersebut mempergunakan teorema Phytagoras.
Misalnya untuk menghitung panjang diagonal EB, bila panjang AB adalah  cm, maka panjang EB adalah :
dengan cara yang sama dapat dihitung pula diagonal sisi yang lainnya.
  1. Diagonal ruang, diagonal ruang adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan pada ruang kubus ABCD.EFGH. dalam sebuah kubus terdapat 4 diagonal ruang yaitu: AG, BH, CE, dan DF. Keempat ruas garis itu berpotongan pada sebuah titik yang membentuk sebagai titik pusat kubus.
Gambar 3
Perhatikan pada gambar 3, segitiga BDH dengan siku-siku di D, dengan teorema phytagoras dapat dihitung panjang BH, jika panjang BD adalah
, maka panjang BH adalah :
Dengan demikian dapat disimpulkan pula bahwa BH=AG=CE=DG=.
  1. Bidang diagonal, bidang diagonal sebuah kubus adalah bidang yang dibuat melalui rusuk yang berhadapan dalam ruang. Perhatikan gambar dibawah ini :
Gambar 4
Bidang BDHF adalah bidang diagonal, sedangkan bidang diagonal yang lainnya adalah  ACGE, ADGF, BCHE, DCFE,dan ABGH.
Keenam bidang diagonal itu masing-masing berbentuk persegi panjang yang sama, jika panjang rusuk adalah a cm, maka luas bidang diagonalnya adalah .
  1. Jaring-jaring kubus.
Bila kubus tersebut terbuat dari karton, lalu digunting mengikuti rusuk-rusuk tertentu, kemudian direbahkan pada bidang horizontal, maka akan diperoleh jarring-jaring kubus dalam berbagai bentuk perhatikan gambar dibawah ini :
Gambar 5
Adakah bentuk yang lain?, silahkan coba sendiri karena masih ada beberapa bentuk yang lainnya (sedikitnya masih ada 9 lagi).
  1. Simetri pada kubus
a.       Bidang parallel tengah. Bidang simetri seperti ini ada 3 buah seperti yang ditunjukkan oleh gambar 6.
a                                                      b                                                        c
Gambar 6
b.      Bidang diagonal. Bidang jenis ini ada 6 macam, perhatikan gambar 7 pada gambar tersebut diperlihatkan 3 contoh, untuk 3 yang lainnya silahkan cari dan gambarkan sendiri.
Gambar 7

c.       Simetri cermin. Sebuah kubus dapat diputar dengan garis s sebagai sumbunya, pada gambar diperlihatkan contoh kubus diputar pada sumbu s, untuk mengetahui berapa banyak simetri putar sebaiknya silahkan mencobanya sendiri dengan membuat kubus dari karton lalu siapkan sebatang kawat sebagai sumbunya.
Gambar 8
  1. Luas permukaan dan volume kubus
Jika sebuah kubus memiliki panjang rusuk a cm, maka luas permukaan dan volum kubus itu dapat dihitung dengan ketentuan sebagai berikut :
Luas permukaan kubus L = 6a2 cm2
Volum kubus V = a3 cm3


Sumber : http://aanchoto.com

0 comments:

Posting Komentar

SMK Plus Assuyuthiyyah " Belajar, Bangun, Bangkit dengan Keahlian untuk Masa Depan yang Gemilang "



By ViKrY'X MadZ
 

Popular Posts

Popular Posts this month

Popular Posts this week